
Abstract. This paper provides a ``perspective'' on the
title paper of Paldus. The introduction of unitary groups
into quantum chemistry has provided not only practical
algorithms for many con®guration-interaction-based
methods still in current use, but has also provided a
conceptual basis in quantum chemistry that is as
important as the practical implementations.

Key words: Unitary groups ± Con®guration interaction

1 Introduction

A colleague recently remarked to me that a practising
theoretical chemist who learned his ``trade'' in the 1990s
has probably never heard of the unitary group approach
(UGA) despite the fact that almost every quantum
chemistry package in current use (excluding those
devoted entirely to density functional computations)
makes use, in some way, of the elegant UGA, ®rst
introduced into quantum chemistry in 1974 by Paldus.
While the theory of continuous groups and the symmet-
ric group was an essential part of the training of the
theoretical chemist in the 1960s and 1970s, this subject is
quite inaccessible to recently trained theoretical chem-
ists. One of the reasons for this is that while the paper of
Paldus gave a completely new insight into the con®gu-
ration-interaction (CI) matrix-element problem, once
this insight was achieved the applications and code
development could proceed without the need to have a
sound understanding of the basic mathematics (group
theory) that led to this new insight in the ®rst place.

Thus the purpose of this article is to try to describe
the impact of Paldus' 1974 paper [1] (see also related
accounts in Refs. [2, 3]) on the evolution of quantum
chemistry at that time.The CI method itself has recently
been reviewed by Shavitt [4] and the reader is referred to
that paper for recent developments. We shall focus in

this paper on the nature of the CI method as it existed in
1974 and the nature of the unitary group revolution
introduced by Paldus that was subsequently turned into
working algorithms by others [5±18] in the 10 years or so
after its introduction.

2 The CI matrix-element problem 1957±1974

Let us begin our discussion with a simple discussion of
the CI matrix-element problem. In the CI problem we
seek the solution of the CI eigenvalue problem

HC � EC ; �1�
where

H � fhKjHLig �2�
is the representation matrix of the Hamiltonian in a
basis of many-particle con®guration state functions
(CSF) which we denote as fjKig. The CSF, fjKig, can
be chosen in a variety of ways (e.g. Slater determinants);
however, in general, they are chosen to be eigenfunctions
of S2 and Sz. The central practical problem is the
evaluation of the matrix hKjHLi. The general formula
for the matrix elements can be expressed as

fhKjHLig �
X

hijAKL
ij �

1

2

X
�ijjkl�BKL

ijkl ; �3�
where hij and �ijjkl� are the usual one- and two-electron
repulsion integrals (in charge-cloud notation). The AKL

ij
and BKL

ijkl are numerical ``vector-coupling'' coe�cients
that depend on the nature of jKi and jLi. The preceding
discussion hides a problem that was the most important
one in 1974. The symbol jKi means an orbital string
(of orbitals occupied in the CSF); however, it also stands
for a sequence number or index. The central problem
was establishing a unique one-to-one correspondence
between the two.

Equation (3) can be read in two ways. On the one
hand, given jKi and jLi, it gives a prescription for
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forming a speci®c matrix element hKjHLi by providing a
list of integral indices ij and ijkl corresponding to non-
zero contributions or ``weights'', AKL

ij and BKL
ijkl, for the

one- and two-electron integrals that contribute to a
given matrix element. This approach is the so-called
matrix-element-driven CI method that was in use in 1974
in the Boys±Reeves bonded-function CI code [19] of the
Polyatom program. However, Eq. (3) can be read the
other way around. One can focus on an integral �ijjkl�.
Then Eq. (3) provides a list of matrix element labels K; L
to which that integral contributes. This is the direct CI
approach introduced by Roos [20, 21] in 1972. In this
approach, one can process the integrals in the CI ei-
genvalue iterations without the need to explicitly as-
semble the matrix H. This direct CI approach is used in
all CI-based methods today; however, Roos' method
was originally formulated for the case where the self-
consistent-held (SCF) result was a good starting point
and the CI he used was built from all single and double
replacements of the SCF orbitals. In this case the AKL

ij
and BKL

ijkl are simple and can be derived using simple rules
(based on the Slater formalism) found in any textbook
on quantum chemistry.

As just pointed out, Roos' method was e�cient but
not general. One needed the methodology to carry out
both full CI (all possible arrangements of electrons in the
available orbitals) and a multireference CI (all possible
single and double replacements from several reference
con®gurations). Roos' method was only for single-ref-
erence CI. In the full CI and in the multireference CI
case, not only does the con®guration list become large,
but also the indexing of the con®gurations becomes a
major problem. For the indexing of the con®gurations,
one needs an algorithm to associate a given string of
occupied orbitals and the associated spin coupling, with
a unique index K in the list of CI con®gurations. In the
early 1970s there was no general solution to the CI
indexing problem. One simply generated a list of con-
®gurations in some ad hoc fashion and wrote the in-
formation to a ®le. (In the Boys±Reeves CI program that
was implemented in the Polyatom program in the late
1960s, the input to the program was just orbital strings
that were punched on cards. The program then gener-
ated all possible spin couplings, so-called canonical sets,
for each orbital pattern). This con®guration-list ®le was
then processed (comparing con®gurations two at a time)
to generate the AKL

ij and BKL
ijkl which were written to a so-

called symbolic matrix-element ®le. This ®le was then
merged with the numerical values of the one and two
integrals in the CI eigenvalue iterations. (In the Polyat-
om program of the 1960s this ®le ®lled several 2400-ft
magnetic tapes for a CI with a mere 2000 con®gura-
tions). Thus, this symbolic matrix-element ®le became
unmanageably large very quickly and this proved to be
an insurmountable problem until the introduction of
UGA methods and direct CI concepts. Further, the
computation of the symbolic matrix elements was so
costly that the possibility of computing matrix elements
``on the ¯y'' was out of the question. Note that every
pair of con®gurations needed to be examined to generate
the symbolic matrix elements. There was no way to tell a
priori which matrix elements would be zero.

Thus the development of general CI-based methods
required the solution of two major problems:

1. A genealogical or hierarchical method of generating
or indexing the con®guration list was essential. What
was required was an algorithm that established a one-
to-one correspondence between a con®guration index
(K) in a hierarchically ordered list and all the orbital
and spin-coupling information about that con®gura-
tion.

2. A fast and e�cient method was required for gener-
ating the AKL

ij and BKL
ijkl that could be used ``on the ¯y''

so that the symbolic matrix elements did not have to
be stored in a symbolic matrix-element ®le.

As we shall now discuss, the UGA introduced by Paldus
solves both these problems.

3 The essential elements of UGA [1±3]

In second quantization, the numerical ``vector-coupling''
coe�cients (the AKL

ij and BKL
ijkl ) appear as matrix elements

of creation and annihilation operators Xyir and Xjr. The
operator X

y
ir creates an electron in an orthonormal

spin orbital jiri, where jiri � jiijri, and r � a or b.
Similarly, operator Xir destroys an electron in the
orthonormal spin orbital jiri. In quantum chemistry
problems in which the number of particles is conserved,
the X

y
ir and Xjr will always occur in pairs. The role of

these operators is easily illustrated by showing their
operation on a speci®c type of CSF, namely a Slater
determinant. Thus, as an example, for the determinant

j . . . . . . ia ja . . . . . . kblb . . . . . . j
we have simply

Xyma Xiaj . . . . . . iaja . . . . . . kblb . . . . . . j
� j . . . . . . maja . . . . . . kblb . . . . . . j : �4�

A good pedagogical discussion can be found in the book
by Matsen and Pauncz [22].

In this ``second quantized'' formalism Eq. (3) be-
comes

hKjHLi �
X

hij

�
K

����X
r

X
y
irXjrL

�
�
X
�ijjkl�

�
K

����X
rc

XyirX
y
kcXlcXjrL

�
:

�5�
Thus we can write

AKL
ij � K

����X
r

X
y
irXjrL

* +
�6�

and

BKL
ijkl � K

����X
rc

X
y
irX
y
kcXlcXjrL

* +
; �7�
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where the summations over r and c are over spin.
For the reader who is encountering second quanti-

zation for the ®rst time, one can observe that application
of the de®nition of Eq. (4) for CSF built from Slater
determinants in the context of (Eq. 6) just reduces to the
usual rules for matrix elements between determinants if
K and L are determinants; however the de®nitions of
Eqs. (6) and (7) remain true irrespective of the nature of
the CSF (and become very powerful when the CSF are
chosen as spin eigenfunctions).

Since the X
y
ir and Xjr always occur in pairs in Eqs. (6)

and (7) it becomes convenient to de®ne a ``generator''

Eij �
X

r

X
y
irXjr : �8�

The vector-coupling coe�cients now take the form

AKL
ij � K EijL

�� �
 �9�
and

BKL
ijkl � K EijEkl ÿ djkEli

ÿ �
L

�� �
:


 �10�
It now remains to make the connection with unitary
groups.

The unitary group U�n� is the group of all n� n
unitary matrices representing unitary transformations
of the orthonormal orbitals fjiig. It is possible to show
that the operators in Eq. (8) satisfy the commutation
relations of generators of the unitary group U�n�.
Eij;Ekl
� � � djkEil ÿ dliEkj ; �11�
where the � � is the commutator i.e. A;B� � � ABÿ BA.
Because of this fact, the matrix elements in Eq. (9) must
be nothing other than group theoretical quantities (i.e.
completely independent of the CI formalism). This point
is important because the set of CSF remains implicit
rather than explicit. There is no need to expand the CSF
as linear combinations of Slater determinants. (Of
course, the same fact is true for the bonded function
approach of Boys and Reeves [13]). The recognition of
this feature, in Paldus' 1974 paper, provides the solution
of both problems in CI: the e�cient evaluation of matrix
elements and a genealogical classi®cation for the CI
basis functions. We now brie¯y discuss both points.

The completely general formulation of the represen-
tations of the unitary group was known to Paldus from
the original work of Gelfand and Tsetlin [23]. Paldus'
contribution was to recognise that the Gelfand and
Tsetlin formalism becomes very simple for the CI
problem in electronic structure theory and in his paper
he presents a purely algebraic description that requires
no prerequisite understanding of the details of the rep-
resentation theory of continuous groups.

The basis for the classi®cation and canonical ordering
of CSF encountered in the CI method is chains of pos-
sible subgroups. When an irreducible representation
(irrep) of a group is restricted to a subgroup the repre-
sentation splits into a direct sum of irrep of the sub-
group. If this subduction process is multiplicity-free (i.e.
a given irrep of the subgroup occurs at most once in this

process) and the last group in the chain is Abelian (and
thus has only one-dimensional irreps) then the chain of
subgroups and irrep labels provides a unique label for
the state of interest. The reader will be familiar with this
process, for example, in the classi®cation of the l � 1
orbital-momentum states in O�3� (L2) and O�2� (lz). For
U�n� this subgroup chain is very simple

U�n� � U�nÿ 1� � U�nÿ 2� � � � U�1� : �12�
The ``labels'' for the CSF basis functions can thus be
written as a triangular Gelfand tableau

m1n m2n � � � � � � � mnn

m1nÿ1 m2nÿ1
� �

m11

266664
377775 : �13�

Each row of the tableau gives the irrep labels for U�n�,
U�nÿ 1� ...etc. The hierarchical ordering comes from
the ``betweenness conditions''. The integers in any row
must lie between those of the previous row. For the
electronic structure problem the integers mim can have
only three values: 2, 1 or 0. Consequently, as Paldus
discovered, each row of the Gelfand tableau could be
denoted by

Ci � 2ai1bi0ci ; �14�
where ai counts the number of 2s in row i, etc. The
integers ai, bi and ci thus classify the CSF in U�i� and
have the following simple relationship.

n � a� b� c �15�
a � N=2ÿ S �16�
b � 2S ; �17�
where N is the number of electrons, n is the number
orbitals and S is the spin.

Then one has the remarkable feature that makes the
U�n� method so powerful for electronic structure prob-
lems. Because of the restriction of the entries in the
Gelfand tableau to 2, 1 or 0 there are only four ways of
adding a lower row to a tableau and still satisfy the
betweenness conditions. This leads to the genealogical
representation (labelled by possible steps 0, 1, 2 or 3) of
the CSF basis shown (in part) in Eq. (18) for U�4� (four
orbitals and four electrons) with a full CI with triplet
spin multiplicity (Cn � 211201).

Remarkably the sequence of step vectors [e.g. (0 1 1)
for basis vector 1 or (0 3 1 ) for basis vector 3 ] in Eq. (18)
is enough to specify all the information that is required
about a CSF and to establish an algorithm for the
implicit representation of the basis.

We turn brie¯y to the second contribution in Paldus'
paper: the computation of the matrix elements them-
selves. Paldus derived the formulae (from the compli-
cated formulae of Gelfand and Tsetlin [23]) for the
so-called elementary generators Ei;i�1. These were both
simple and, more importantly, gave only the nonzero
matrix elements directly using only the step vectors
as ``inputs''. Paldus states that the general program
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required only 400 ``cards''. The remaining matrix ele-
ments could be found from the commutation relation-
ships

Eij;Ejl
� � � Eil : �19�
In addition, the two-particle matrix elements could be
obtained from

BKL
ijkl �

X
M

KjEijMihM jEklLi ÿ djkhKjEliL

 �

; �20�

where the summation over M was over all the basis
states. In his 1974 paper, Paldus did not put these two
ideas together into a working algorithm. Rather both
ideas formed the basis of the practical approach that
Shavitt [5] was shortly to follow.

Thus, in Paldus 1974 paper one has, in principle, the
method for the hierarchical basis function generation
and the computation of the matrix elements themselves.
The evolution of the method to become a practical tool
in quantum chemistry then proceeded rapidly. We now
very brie¯y bring the article to its conclusion with a brief
mention of these key developments by Shavitt and by
Siegbahn.

The development of UGA post 1974

E�cient subsequent general CI algorithms were based
upon the subsequent graphical implementation of UGA
by Shavitt [5, 6]. Shavitt derived a graphical represen-
tation [5] for the genealogical representation illustrated
in Eq. (18) and showed that it could be represented
e�ciently on a computer via a ``distinct row table''. He
also observed that the nonzero matrix elements corre-
sponded to closed loops on his graph. The importance of
this loop structure comes from the fact that many matrix
elements have the same matrix-element loop but di�ered
only in the ``upper'' and ``lower'' walks on the graph.
This observation means that the numerical value of the
matrix-element ``loop'' needed only to be computed once
and its contribution to all the matrix elements to which it
contributed could be evaluated immediately by ``follow-
ing'' the upper and lower walks. However, the most

important breakthrough came when Shavitt recognised
[6] that the evaluation of the matrix elements in the loop
could be formulated in terms of sums of products of
``segments'' within these loops for each orbital level on
the graph. This eliminated the last bottleneck which
arises because of the sum over M in Eq. (20). Thus a CI
code could be developed that was ``loop'' or ``shape''
driven [18], where all the matrix elements could be
evaluated ``on the ¯y'' without storing any formula tape.

However, while loop-driven methods provide a good
approach to full CI, for multireference CI, these meth-
ods are too general. Thus the ®nal chapter in the UGA
story comes from the work of Siegbahn [7±10]. Siegbahn
noticed that in multireference CI the matrix-element
segments that occurred in levels in the virtual orbital
space were particularly simple. He showed that one can
con®ne the detailed analysis required for matrix formula
determination to the levels that correspond to reference
space orbitals. The contribution from the levels that
correspond to virtual levels, which take the same form in
all calculations, can be built into the structure of the
computer program rather than being treated in a general
way.

Thus, at the end of the story, most of the complexity
of the general matrix-element problem for CI goes away.
The general matrix-element problem remains only for
the reference space part of multireference CI; however,
Siegbahn would certainly never have discovered this fact
without the general formalism introduced by Paldus and
its graphical realisation by Shavitt. It is worth noting
that Shavitt's graphical approach was carried out heu-
ristically. He did not need to understand the (beautiful)
theory of continuous groups. Rather it is the structure of
the CI problem that emerges from Paldus work that was
the important breakthrough.

5 Conclusion

In this perspective we have focused on the nature of the
CI method as it existed in 1974 and on the nature of the
unitary group revolution introduced by Paldus. This
method was subsequently turned into working algo-

�18�
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rithms by others [5±18] in the 10 years or so after its
introduction. Of the developments post 1974 we have
only mentioned the work of Shavitt and Siegbahn
because they introduced the ®rst steps that were needed
to make the method work in practice. The reader is
referred to Refs. [5±18] to trace the immediately
subsequent developments in more detail. Of course,
there has been much development of the subject since the
early 1980s and the interested reader might start by
looking at Ref. 24.

The lasting importance of Paldus' 1974 paper stems
from the fact that it introduced a new way of thinking
into quantum chemistry problems related to the CI
method.
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